Acplicutsons:

$$
\Rightarrow \delta \hat{=} \delta^{2}
$$

1. S upct $K \geqslant 0$ not $\equiv 0 \Rightarrow S \underset{\text { var. }}{\cong} S^{2}$
2. If $K \leqslant O, S$ con have vo geoderic lunes
(2) $\iint_{G} K_{6}=2 a X(s)$

r

$$
\begin{aligned}
& \text { frds }^{0} \theta_{1} \theta_{2}=2 \pi-\iint K d \sigma \\
& \Rightarrow \theta_{1}+\theta_{2} \geq 2 \pi \\
& \Rightarrow \theta_{1}=\theta_{2}=\pi \text { blc } \theta_{i} \leq \pi
\end{aligned}
$$

$\Longrightarrow \sigma=\gamma$ by unicqueness of geoderics $\rightarrow \leftarrow \perp$
3. If S homo $S \times \mathbb{R}, ~ K<0$, then S has at moct one simple coued geodesic.

$x($ bue \cup pare $)=2$ $x($ boue $)=0$

$0>2 \pi \rightarrow t$
$0>0 \rightarrow t$
nolunes $\longrightarrow \leftarrow$

extucion: In fact, we see if $K \leq 0$, and S has two aimple clowd afodesich, then the vegion in between leas $k=O$.
4. If $k>0$, scongact then any two simple clod geodesics interact.
TAle, if R is the surface between them

$$
\begin{aligned}
& 0=x(R)-\int_{R} k \\
\Rightarrow & x(R)>0
\end{aligned}
$$

but $X(Q) \leq 0$ ble'if gen glue on two disks to \mathscr{A}, you get a coned surface π so $x(\pi) \leq 2$,
hut $x(\pi)=x(R)+2$.
5. Interior angle sums in geodesic Δ are

- Equal to a er $k=0$
- Greeter thou a if $k>0$
- less than a if $K<0$
t

$$
\begin{aligned}
& \Sigma \theta_{i}=2 \pi-\iint_{\Delta} k d \sigma \quad \varphi_{i}=\pi-\theta_{i} \text { are interior angles } \\
& 3 \pi-\Sigma \varphi_{i}=2 \pi-\iint_{\Delta} k d \sigma \\
& \left.\iint_{\Delta} k+\pi=\sum \mu_{i}\right\rfloor
\end{aligned}
$$

2.1 seneforms + the lorvatine of the suge op in nomed loords.

$$
\begin{aligned}
& L_{2} g=2 g B \\
& B=\frac{1}{2} \theta^{-1} l_{x} g \\
& \left(L_{r} B\right)(X)=L_{2 r}(B(x))-B\left(L_{2 r} x\right) \\
& =\nabla_{r} \nabla_{x} r-\nabla_{\sigma^{2}} r^{2}-\nabla_{\nabla_{r} r}^{r} \nabla_{\nabla_{x}} r \\
& =R(r, x) r-\nabla_{\gamma} \nabla_{r} r-\nabla_{\nabla_{x} r} r \\
& =-R_{r} X-B^{2} X \quad \text { why? de } R_{a r}=K \pi_{2 r}{ }^{2} \text { Rrer } \\
& \text { curaes }
\end{aligned}
$$

eg $g=\left[\begin{array}{ll}1 & 0 \\ 0 & \lambda^{2}\end{array}\right] \Rightarrow B=\left[\begin{array}{ll}0 & 0 \\ 0 & \frac{\lambda_{r}}{\lambda}\end{array}\right]$

$$
\begin{gathered}
B_{r}+B^{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & \frac{\lambda_{r}}{\lambda}
\end{array}\right] \\
\left(B_{r}+B^{2}\right)\left(\partial_{\theta}\right)=\left(\frac{\lambda_{r v}}{\lambda}\right)\left(\partial_{\theta}\right) \\
K=-\frac{\lambda_{m}}{\lambda}
\end{gathered}
$$

\rightarrow solve uspotodic plore, gove: lem 2-dion'l speceforms ove unize.
necall $\Omega_{2}^{\prime}\left(e_{1}, e_{2}\right)=K\left(\left[\nabla_{1} \nabla_{2}\right] e_{1}, e_{2}\right) R_{12}{ }^{\prime}{ }^{\prime}$

